84 Marzo-Abril 2020 Más información:
[email protected] proteccion cabeza ocular auditiva y respiratoria de producir enfermedad por inhala- ción, en este estudio instilan CNT y amianto (amosita en fibras largas y cortas) en ratones y observan que ambas fibras actúan de forma simi- lar en cuanto al daño en DNA. Son lesiones epigenéticas, lo que expli- ca el periodo de latencia prolonga- do. Propone un esquema (figura 4) para la producción de mesotelioma. Por tanto, tenemos ya evidencias de que los CNT producen: afecta- ción del sistema inmune, inflamación de pulmones y pleura, asma bron- quial, fibrosis pulmonar con forma- ción de granulomas, genotoxicidad y cancerigenicidad en hu- manos. No disponemos de consensos para los programas de segui- miento, aunque se propone internacionalmente el de NIOSH (National Institute of Occupational Safety and Health) de Ho- landa, similar a amianto. Como la nanotecnología y su industria están en expansión ex- plosiva, son absolutamente necesarios los programas de control y seguimiento. Y más aún dada la dificultad, por el tamaño de las fibras, de utilizar sistemas de filtrado. Bibliografía 1) Bonner JC. Nanoparticles as a Potential Cause of Pleural and Inter- stitial Lung Disease. Proc Am Thorac Soc [Internet]. 2010;7(2):138– 41. Available from :ttp://pats.atsjournals.org/cgi/doi/10.1513/ pats.200907-061RM 2) Rydman EM, Ilves M, Koivisto AJ, Kinaret PAS, Fortino V, Savinko TS, et al. Inhalation of rod-like carbon nanotubes causes unconvention- al allergic airway inflammation. Part Fibre Toxicol. 2014;11(1):1–17. 3) Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nano- tube-Induced Lung Fibrosis. Front Immunol [Internet]. 2018 May 22 [cited 2018 Oct 5];9. Available from: https://www.frontiersin.org/ar- ticle/10.3389/fimmu.2018.01120/full. 4) Chortarea S, Barosova H, Clift MJD, Wick P, Petri-Fink A, Rothen-Ru- tishauser B. Human Asthmatic Bronchial Cells Are More Susceptible to Subchronic Repeated Exposures of Aerosolized Carbon Nano- tubes At Occupationally Relevant Doses Than Healthy Cells. ACS Nano [Internet]. 2017 Aug 22 [cited 2018 Oct 5] ;11(8):7615–25. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b01992 5 Ihrie MD, Bonner JC. The Toxicology of Engineered Nanomateri- als in Asthma. Curr Environ Heal Reports [Internet]. 2018 Feb 13 [cited 2018 Oct 5]; Available from: http://link.springer.com /10.1007/ s40572-018-0181-4 6) Schubauer-Berigan MK, Dahm MM, Erdely A, Beard JD, Eileen Birch M, Evans DE, et al. Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber expo- sure among U.S. workers: A cross-sectional study. Part Fibre Tox- icol. 2018;15(1):1–14. 7) Sargent, L. M, D. W. Porter, L. M. Staska, A. F. Hubbs, D. T. Lowry, L. Battelli, K. J. Siegrist, et al. 2014. Promotion of Lung Adenocarcinoma following Inhalation Exposure to Multi-Walled Carbon Nanotubes. Particle and Fibre Toxicology 11 (1): 3. doi:10.1186/1743-8977-11-3. 8) Duke K, & Bonner JC. Role of p53 in the chronic pulmonary im- mune response to tangled or rod-like multi-walled carbon nano- tubes: Nanotoxicology14 Oct 2018. 9) Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nano- tube-Induced Lung Fibrosis. Front Immunol [Internet]. 2018 May 22 [cited 2018 Oct 5];9. Available from: ttps:// www.frontiersin.org/ar- ticle/10.3389/fimmu.2018.01120/full 10) Stella GM. Carbon nanotubes and pleural damage: Perspectives of nanosafety in the light of asbestos experience. Biointerphases [Internet]. 2011;6(2):P1–17. Available from: http://avs.scitation. org/ doi/10.1116/1.3582324 11) Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, et al. 2010. Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes. Toxicology 269 (2–3): 136–147. 12) Poland, C. A., R. Duffin, I. Kinloch, A. Maynard, W. A. H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, and K. Donaldson. 2008. Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-like Pathogenicity in a Pilot Study. Nature Nano- technology 3 (7): 423–428. doi:10.1038/ nnano.2008.111 13) Varga and K. Szendi, Carbon nanotubes induce granulomas but not mesotheliomas In Vivo 24, 82 2010. 14) Chernova T, Murphy FA, Galavotti S, Sun XM, Powley IR, Grosso S, et al. Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cd- kn2a (Ink4a/Arf). Curr Biol [Internet]. 2017;27(21):3302–3314.e6. Available from: https://doi.org/10.1016/j.cub.2017.09.007 15) Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K. Nano- material exposure, toxicity, and impact on human health. Wiley In- terdiscip Rev Nanomedicine Nanobiotechnology. 2018;10(5):1–21 16) Gulumian M, Verbeek J, Andraos C, Sanabria N, de Jager P (2016) Systematic Review of Screening and Surveillance Programs to Pro- tect Workers from Nanomaterials. PLoS ONE 11(11): e0166071. doi: 10.1371/ journal.